

Home Search Collections Journals About Contact us My IOPscience

Bounds for the minimum step number of knots in the simple cubic lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 J. Phys. A: Math. Theor. 42 475006 (http://iopscience.iop.org/1751-8121/42/47/475006) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.156 The article was downloaded on 03/06/2010 at 08:23

Please note that terms and conditions apply.

J. Phys. A: Math. Theor. 42 (2009) 475006 (24pp)

doi:10.1088/1751-8113/42/47/475006

Bounds for the minimum step number of knots in the simple cubic lattice

R Scharein¹, K Ishihara², J Arsuaga¹, Y Diao³, K Shimokawa² and M Vazquez¹

¹ Department of Mathematics, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132, USA

² Department of Mathematics, Saitama University, Saitama 338-8570, Japan

³ Department of Mathematics and Statistics, University of North Carolina Charlotte, Charlotte NC 28223, USA

E-mail: mariel@math.sfsu.edu

Received 10 June 2009, in final form 22 September 2009 Published 9 November 2009 Online at stacks.iop.org/JPhysA/42/475006

Abstract

Knots are found in DNA as well as in proteins, and they have been shown to be good tools for structural analysis of these molecules. An important parameter to consider in the artificial construction of these molecules is the minimum number of monomers needed to make a knot. Here we address this problem by characterizing, both analytically and numerically, the minimum length (also called minimum step number) needed to form a particular knot in the simple cubic lattice. Our analytical work is based on improvement of a method introduced by Diao to enumerate conformations of a given knot type for a fixed length. This method allows us to extend the previously known result on the minimum step number of the trefoil knot 3_1 (which is 24) to the knots 4_1 and 5_1 and show that the minimum step numbers for the 4_1 and 5_1 knots are 30 and 34, respectively. Using an independent method based on the BFACF algorithm, we provide a complete list of numerical estimates (upper bounds) of the minimum step numbers for prime knots up to ten crossings, which are improvements over current published numerical results. We enumerate all minimum lattice knots of a given type and partition them into classes defined by BFACF type 0 moves.

PACS numbers: 82.35.Pq, 02.10.Ky, 02.40.Sf

1. Introduction

Knots are commonly found in long biopolymers such as DNA and proteins. In the laboratory, DNA knots are used as probes for characterizing biophysical properties of DNA in solution

1751-8113/09/475006+24\$30.00 © 2009 IOP Publishing Ltd Printed in the UK

[28, 31] and in confinement [3], analyzing enzymatic actions, such as site-specific recombination (e.g. [4, 7, 34]) and topoisomerase action [5, 8, 13, 27, 32]. DNA knots are also engineered as nanotechnological devices [25, 30].

The backbone of some polypeptide chains (i.e. monomeric proteins) from different organisms such as viruses [36], bacteria [22] or humans [35] follows trajectories that are knotted upon joining of the C-terminus with the N-terminus of the protein. Examples of families that contain knotted proteins include RNA methyltransferases [26], kinases [36] and transmembrane proteins [22]. The existence of such protein knots challenges some of the current hypotheses in protein folding and evolution [24, 33, 35]. Understanding the protein knots will give insight into these important processes.

Most theoretical studies of knotted biopolymers deal with properties that are observed when the molecules are long (e.g. [3, 11, 12, 21]). However, the formation of knots in short biopolymers is also important in DNA and protein nanotechnology. A question that naturally arises from these studies is the following. What is the minimum number of nucleotides (for DNA) or residues (for proteins) that one needs to form a knot of a given knot type?

This question has been addressed by a number of theoretical studies in the continuum [6] and in lattices [9]. Here we aim to determine the minimum length needed to construct a knot in the simple cubic lattice (\mathbb{Z}^3). This number is called the *minimum step number* of the knot. In [9] it was rigorously shown that the minimum step number for any non-trivial knot in \mathbb{Z}^3 is 24 and only a trefoil can be realized with 24 steps. Numerical constructions of various minimum step knots with length up to 60 were studied by Janse van Rensburg [18] and were later extended in [15].

In this paper, we first introduce needed definitions and terminology (section 2). In section 3, we present an improved version of the method developed by Diao in [9]. This refined method proves to be very useful in the quest to find the minimum step number for a given knot in \mathbb{Z}^3 . We outline how the method can be used to prove that the minimum step number for the 4_1 knot is 30 and that the minimum step number for the 5_1 knot is 34. The complete proofs are quite lengthy and will be reported elsewhere [16, 17]. In section 4, we explain the numerical methods, based on the BFACF algorithm, used to numerically search for the minimum step numbers for prime knots up to ten crossings. In section 5, we report on the numerical results. Strictly speaking, the numbers obtained in this way are only upper bounds of the corresponding minimum step numbers since they have not been analytically proved, except for the knots 3_1 , 4_1 and 5_1 . However, we expect most of these numbers to be very close to the corresponding minimum step numbers (if not already the minima) due to the power and depth of the search method. In particular, we are able to improve a few previously reported minimum step number bounds for some knot types. Finally, for each prime knot \mathcal{K} up to ten crossings, we enumerate all numerically found minimum step lattice polygons of knot type \mathcal{K} up to rigid motions. We construct equivalence classes of minimum polygons, where two minimum polygons of type \mathcal{K} are equivalent if they are related by a rigid motion. Each class is represented by a suitably chosen *canonical polygon*. Then, we enumerate all *canonical polygons* for prime knots up to 10 crossings. We find exactly 75 canonical polygons for the 3_1 , some of which were missing in the earlier enumeration [9]. The exact numerical results are given in a series of tables in the appendix (tables A1–A4). Table A3 and its accompanying figures illustrate the complete list of canonical lattice polygons with 24 steps for the trefoil.

2. Definitions

Consider the simple cubic lattice \mathbb{Z}^3 . A *step* is a line segment of unit length joining two lattice points in \mathbb{Z}^3 (namely points with integer coordinates). A *lattice polygon K* of length *n* is a

Figure 1. This figure illustrates three possible knot diagrams obtained from the weighted graph G shown on the left. Many knot and link diagrams can be constructed from a single graph G by varying its weight assignments.

polygon embedded in \mathbb{Z}^3 with *n* steps. The *minimum step number* of a knot type \mathcal{K} is the minimum number of steps needed to construct a lattice polygon *K* of knot type \mathcal{K} . A step parallel to the *x*-axis is called an *x*-step; *y*- and *z*-steps are defined similarly.

Definition 1. *Two lattice polygons are said to be equivalent if they can be superimposed by a rigid motion, i.e., by any combination of translations, rotations and reflections. We call such equivalence class a canonical lattice polygon.*

Note that in the above definition, the orientation of the polygon is not considered. In section 4, we describe a *standardization algorithm* which allows us to choose a unique polygon to represent each class. By a slight abuse of notation, in this work we refer to the class, and to the standard polygon that represents it, as a *canonical polygon*.

Let *K* be a lattice polygon of *n* steps. Let *a* (resp. *b*, *c*) be the number of *x*-steps (resp. *y*, *z*-steps) in *K*. In the enumeration section, we only enumerate canonical lattice polygons of minimum step number. Without loss of generality we assume that $c \ge \max\{a, b\}$. Let $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ be the orthogonal projection in the *z*-direction, and let *G* be the planar graph $\pi(K)$ (where the lattice points are the vertices and the steps joining the vertices are the edges). The *multiplicity* m(e) of an edge *e* in *G* is the number of steps of *K* projected onto *e* by π . The *multiplicity* m(v) of a vertex *v* in *G* is the sum of multiplicities of edges incident to *v*. In the context of this paper, *G* is a weighted graph with vertex and edge weights defined as their corresponding multiplicities. The sum of all edge multiplicities is called the *total multiplicity* of *G* and is denoted by *m*. Note that $m = a + b \leq \frac{2n}{3}$ when $c \ge \max\{a, b\}$.

Figure 1 shows a weighted planar graph on the square lattice Z^2 and several possible lattice knots that project onto this graph.

The spatial behavior of lattice polygons of fixed knot type and length can be simulated in the computer using the BFACF algorithm [1, 2]. BFACF introduces local moves in a polygon. Figure 2 defines the three basic moves used in the BFACF algorithm, called type 0, 2 and -2moves, respectively. A type 0 move preserves the step number of the lattice polygon, a type 2 move increases the step number by 2 and a type -2 move decreases the step number by 2. The BFACF algorithm determines a Markov chain which can sample all possible configurations of the polygons of length $L \pm e$ without changing the knot type [20, 23]. The significance of the BFACF moves is implied in the following theorem.

Theorem 1 [20]. Let K_1 and K_2 be any two lattice polygons of the same knot type. Then K_2 can be obtained from K_1 by a finite sequence of BFACF moves (i.e. a finite sequence of type 0, 2 and -2 moves).

Figure 2. The figure illustrates type 0, 2 and -2 moves from the BFACF algorithm. A vertex in the figure marked by an open circle indicates a lattice point not occupied by the lattice polygon.

Definition 2. A lattice polygon K is called reducible if its step number can be reduced by applying only type 0 and -2 moves. Otherwise K is called irreducible.

Note that a lattice polygon with a minimum step number is irreducible, but not all irreducible lattice polygons have a minimum step number.

3. Theoretical results

In this section, we outline the approach used to obtain the theoretical minimum step numbers for knots 4_1 and 5_1 .

Theorem 2. The minimum step number of 4_1 is 30 and the minimum step number of 5_1 is 34.

Our approach is a modified and improved version of the original method used in [9] to prove that 24 is the minimum step number of 3_1 . The method used in [9] can be summarized as the following algorithm.

Minimum Step Algorithm [9]

Step 1. Enumerate all weighted planar graphs in the square lattice \mathbb{Z}^2 with total multiplicities at most $\frac{2n}{3}$. Note that each edge has weight (multiplicity) at least 1 in the weight assignment.

Step 2. For each weighted graph G obtained from step 1, generate all possible knot diagrams K_G with G as its projection.

Step 3. For each knot diagram K_G enumerate its possible lattice polygon realizations with at most *n* steps and determine its knot type.

When $n \leq 24$, the enumeration in the above algorithm is still manageable. However, as *n* increases, the cases that need to be examined grow exponentially. In order to obtain the results in theorem 2, significant improvements to the above algorithm are needed. Here we will present several partial results to show how the number of calculations in the above algorithm can be reduced. Due to the length and complexity of these proofs only an outline is provided. The full proofs can be found in [16, 17]. First we have the following proposition.

Proposition 1. Let *K* be an irreducible lattice polygon with *n* steps of a nontrivial prime knot type. Then, $G = \pi(K)$ is contained in rectangles of size $\left(\frac{k}{2} + 1\right) \times \left(\frac{n-2k}{8} + 1\right)$ for an integer *k* with $2 \le k \le \frac{n}{6}$.

Proposition 1 follows from proposition 2 below directly.

Proposition 2. Let *K* be an irreducible lattice polygon with *n* steps of nontrivial prime knott type. Then, *K* is contained in boxes of size $\binom{k}{2} + 1 \times \binom{l}{2} + 1 \times \binom{n-2(k+l)}{4} + 1$ for integers *k* and *l* where $2 \le k \le \frac{n}{6}$ and $k \le l \le \frac{n-2k}{4}$.

Proof. Let *i* be an element of $\{x, y, z\}$ and s_i the number of *i*-steps of *K*. Note that $s_x + s_y + s_z = n$. Let $D_i(K)$ be the diameter of a lattice polygon *K* for the *i*-direction, which is the length of the image of the projection of *K* into the *i*-axis.

We claim that $D_i(K) \leq \frac{s_i}{4} + 1$. To see this, let *a* be a number of the form $k + \frac{1}{2}$ for some $k \in \mathbb{Z}$. Let $P_i(a)$ be the intersection of *K* and the plane z = a in \mathbb{R}^3 . If $|P_i(a)| = 2$, then $P_i(a-1) = \emptyset$ or $P_i(a+1) = \emptyset$. Otherwise *K* is a composite knot or reducible. Hence, if $P_i(a-1) \neq \emptyset$ and $P_i(a+1) \neq \emptyset$, then $|P_i(a)| \geq 4$. It follows that $s_i = \sum_a |P_i(a)| \geq 4(D_i(K) - 2) + 4 = 4D_i(K) - 4$, hence $D_i(K) \leq \frac{s_i}{4} + 1$. Now let $s_x = 2k$ and $s_y = 2l$. Since s_x and s_y are even, *k* and *l* are integers. Without loss of generality, let us assume $s_x \leq s_y \leq s_z$. Then, $2k = s_x \leq \frac{s_x + s_y + s_z}{3} = \frac{n}{3}$ and $2l = s_y \leq \frac{s_y + s_z}{2} = \frac{(s_x + s_y + s_z) - s_x}{2} = \frac{n-2k}{2}$. Hence, we have $k \leq \frac{n}{6}$ and $k \leq l \leq \frac{n-2k}{4}$. If k = 1, then *K* is a 1-bridge knot. Hence it is trivial. Therefore $2 \leq k \leq \frac{n}{6}$. By the argument of the previous paragraph, $D_x(K) \leq \frac{s_x}{4} + 1 = \frac{k}{2} + 1$, $D_y(K) \leq \frac{s_y}{4} + 1 = \frac{l}{2} + 1$ and $D_z(K) \leq \frac{s_x}{4} + 1 = \frac{n-2(k+l)}{4} + 1$. Hence *K* is contained in a box in \mathbb{R}^3 with size $(\frac{k}{2} + 1) \times (\frac{l}{2} + 1) \times (\frac{n-2(k+l)}{4} + 1)$.

With proposition 1, we can add a new step to the **Minimum Step Algorithm** prior to step 1, and modify step 1 accordingly as shown below. These two new steps greatly reduce the total number of cases to be examined.

Step 0. Enumerate all rectangles in \mathbb{Z}^2 whose dimensions satisfy the conditions given in proposition 1.

Step 1'. For each rectangle R identified in step 0, enumerate all weighted planar graphs in R with total multiplicities at most $\frac{2n}{3}$.

The following proposition allows us to identify graphs G that produce reducible lattice polygons.

Proposition 3 [17]. Let e be an edge of G whose end points are v_1 and v_2 . If $2m(e) \ge m(v_1)$ and $2m(e) > m(v_2)$, then K is reducible.

Proposition 4 [17]. Let c(K) be the crossing number of K. Then

$$c(K) \leqslant \sum_{v \in G} T\left(\frac{m(v)}{2}\right) - \sum_{e \in G} T(m(e)) + 3(f-1),$$

where $T(x) = \frac{(x-2)(x-3)}{2}$ and f is the number of faces of G.

Proposition 4 can be used to estimate the crossing number of the lattice polygon K in \mathbb{Z}^3 using the multiplicities and the number of faces of G. For example, the graph in figure 1 can be a projection of the figure 8 knot. The right-hand side of the inequality in proposition 4 for that graph is 4 (the estimation in proposition 4 is sharp in this case); therefore, that graph cannot be a projection of 5_1 in \mathbb{Z}^3 . This fact is used in the proof of theorem 2. Due to length consideration, the proofs for propositions 3 and 4 are not presented here. Instead we provide an example in figure 3 to help with the understanding of proposition 3.

We end this section with an outline of the proof of theorem 2. For the case of 4_1 , one can construct 4_1 in \mathbb{Z}^3 with 30 steps as shown in figure 4. Thus, we only need to show that

Figure 3. Left: a weighted graph *G* with an edge *e* spanning two vertices v_1 and v_2 . Center: an example of *e* with m(e) = 4, $m(v_1) = 8$ and $m(v_2) = 6$. In this example, *e*, v_1 and v_2 satisfy the conditions in proposition 3. This figure shows a three-dimensional conformation *K* projecting onto *G*, and illustrates the reducibility of *K*. Right: another graph *G* whose central edge *e* has m(e) = 6 and satisfies proposition 3. Graphs with this property do not need to be considered in the construction of minimum step lattice knots.

Figure 4. Realizations of 4_1 and 5_1 on the lattice with 30 and 34 steps. All lattice knots in this paper are drawn using KnotPlot [29].

any lattice polygon with at most 28 steps is either the trivial knot or the trefoil knot. By [9, 10], it is known that any lattice polygon with at most 24 steps is trivial or the trefoil knot. Let *K* be an irreducible non-trivial lattice polygon with n = 26 or 28 steps. By taking a suitable projection, one obtains a graph *G* with total multiplicity at most 18. By proposition 1, *G* is contained in a rectangle of dimension 2×4 or 3×3 . By using the Euler characteristic, one can show that there are at most six faces in *G*. We then apply propositions 2, 3 and 4 to further simplify the enumeration of these graphs. Finally, we follow the steps proposed in [9, 10] to list corresponding lattice polygons and determine their knot types and show that each lattice polygon is either trivial or the trefoil.

The case of 5_1 follows the same steps but the calculations are more involved.

4. Simulation methods

In our simulations, we used the BFACF algorithm as described in [23]. The BFACF algorithm has been used to estimate properties of knots in \mathbb{Z}^3 such as the writhe, the radius of gyration

and the minimum stick number [18, 19]. In this algorithm, the spatial movement of a lattice polygon is simulated by repeated local moves made to the polygon. The BFACF algorithm can sample all possible configurations of the polygons within a given knot type [23]. That is, the BFACF algorithm generates Markov chains whose ergodicity classes are the knot types [20]. The algorithm samples conformations from a Gibbs distribution with one adjustable parameter *z*, the fugacity per bond, that satisfies that $0 \le z \le z_c$, where $z_c = 0.2134$ is the inverse of the connective constant in \mathbb{R}^3 [23]. The resulting Markov chain is generated using the three elementary moves defined earlier in figure 2. Type 0, +2 or -2 moves are selected with probabilities p(0), p(2) and p(-2), respectively. The probabilities are given by $p(0) = \frac{1+z^2}{2(1+3z^2)}$, $p(2) = \frac{z^2}{1+3z^2}$ and $p(-2) = \frac{1}{1+3z^2}$. To ensure that duplicated lattice polygons are not counted in our enumeration process,

To ensure that duplicated lattice polygons are not counted in our enumeration process, we introduce a method to place a lattice polygon (of minimum steps) in 'standard form'. We represent a lattice polygon by a NEWSUD *string*, namely a sequence of letters from the set $\{N, E, W, S, U, D\}$ (abbreviations for North, East, West, South, Up and Down) with each letter representing the corresponding edge direction.

Standardization algorithm Start from a given lattice polygon in the NEWSUD format, for example: UENNWWSWDDEEUUUNWWDDESSE (a) List all 24 forms obtained from it by rotations in \mathbb{Z}^3 , UENNWWSWDDEEUUUNWWDDESSE SEUUWWDWNNEESSSUWWNNEDDE DESSWWNWUUEEDDDSWWUUENNE

UENNWWSWDDEEUUUNWWDDESSE.

(b) Because these forms are computer generated, they have a starting edge and an orientation, both of which are not interesting for the purposes of our enumeration. Therefore, for each rotated form, we list all possible shifts,

UENNWWSWDDEEUUUNWWDDESSE EUENNWWSWDDEEUUUNWWDDESS SEUENNWWSWDDEEUUUNWWDDES

(c) For each rotated or shifted form we also consider the form with the opposite (reverse) orientation. Note that this is not simply the reversal of the string since that would produce the mirror image of the lattice polygon. The lattice polygon NNDDSEDDWUUUEENDDWSSUUU reversed is DDDNNEUUSWWDDDEEUUWNUUSS (string reversed and substitutions $N \leftrightarrow S$, $E \leftrightarrow W$ and $U \leftrightarrow D$ made). Furthermore, in the case of achiral knots, the additional $2 \times n \times 24$ strings resulting from reflections are also considered.

(d) For an *n* step lattice polygon this algorithm produces up to $4 \times n \times 24$ forms (many of which may be duplicates). We choose the lexicographically least of all these as the *standard form*. For example, the standard form of UENNWWSWDDEEUUUNWWDDESSE is DDDEEUUWSWWNNEDESSEUUWWN.

Conformations of lattice polygons of the same knot type are different if their standard forms are different. Note that it is ideal to use this standard form to represent the class of polygons modulo rigid motion introduced in definition 1. We refer to the polygon in standard form as a *canonical polygon*.

The numerical simulation involves two major phases, as follows.

Phase 1: Identification and standardization of minimum step number lattice polygons. Each knot type is subjected to several iterations of the following numerical search.

- (i) Run the BFACF algorithm on a lattice polygon of fixed knot type, periodically switching between high and low *z* values. The lattice polygon with the fewest edges produced in this process is retained.
- (ii) If the number of edges of the lattice polygon found in the step (i) is greater than the current lower bound for the step number of the knot type, discard this lattice polygon and go on to the next knot type.
- (iii) If the lattice polygon is not discarded, it is then put through the *standardization procedure*. From this procedure results a canonical polygon. If the canonical polygon has not been found before, it is added to the list as a new canonical lattice polygon.

Note that as the list of distinct conformations for a given knot type grows during the random search using the identification algorithm described above, only canonical conformations obtained form the standardization algorithm are stored. Incoming potentially new conformations are standardized first and then added to the list if they are not already there.

Phase 2: Expansion.

The second phase expands the data found during phase 1. Each conformation is exhaustively run through a modified BFACF algorithm allowing only type-0 moves. Only those canonical conformations not already found after a standardization step are retained. For most knots up to eight crossings, this phase produces very few or no additional conformations. However, the expansion phase is necessary for some nine and ten crossing knots.

In order to better group the canonical lattice polygons, we define a new equivalence class induced by BFACF type 0 moves.

Definition 3. Two canonical lattice polygons are type 0 equivalent if one can be taken into the other via a finite sequence of BFACF type 0 moves.

Definition 4. A canonical lattice polygon is taut if we cannot apply any type 0 move to any of its lattice polygons.

In other words, a canonical lattice polygon is taut if its type 0 equivalence class contains only one element. In the next section, we compute the number of type 0 equivalence classes under this relation for each knot type.

5. Numerical results

We ran the numerical simulations following the identification, standardization and expansion phases as explained in the previous section. To obtain the results reported here, a z value was chosen uniformly at random in the interval (0, 0.2) ('high' z). The simulation was run for 100 000 iterations, followed by a run of 60 000 iterations at z = 0.02 ('low' z). This cycle was repeated 100 times. Note that the actual values and length of the run between z-changes were quite arbitrary.

Due to their length, tables summarizing the numerical results are placed in the appendix. Table A1 outlines our main numerical results for all prime knots up to ten crossings. The knot types are given in column \mathbf{K} , the minimum step number bounds are given in column \mathbf{S} , the numbers of canonical conformations found in phase 1 are given in column \mathbf{R} , the numbers of conformations found in phases 1 and 2 combined are given in column \mathbf{E} and the numbers of type 0-equivalent classes are given in column \mathbf{C} . In the following subsections, we will discuss our findings. Numerical estimates of minimum step number, as well as examples in

Figure 5. Standard lattice polygons of 1-1, 2-1 and 3-1 as listed in table 1. Their projection graphs (as weighted plane graphs) were not recorded in [10].

Table 1. The 27 canonical lattice polygons missing from [10].

1-1	DDDEENUUWSSDWWNNEESEUUWW	1-2	DDDEENUUWSSWDWNNEESEUUWW
1-3	DDDEENUUWSSWWDNNEESEUUWW	1-4	DDDEENUUWSSWWNDNEESEUUWW
1-5	DDDEENUUWSSWWNNDEESEUUWW	1-6	DDDEENUUWSSWWNNEDESEUUWW
2-1	DDDEESUUWWDWNNEESSSUUNNW	2-6	DDDEESUUWWWDNNEESSSUUNNW
2-7	DDDEESUUWWWDNNEESSSUUNWN	2-11	DDDEESUUWWWDNNEESSWSUUNN
2-12	DDDEESUUWWWNDNEESSSUUNWN	2-16	DDDEESUUWWWNDNEESSWSUUNN
2-17	DDDEESUUWWWNNDEESSSUUWNN	2-21	DDDEESUUWWWNNEEDSSSWUUNN
2-22	DDDEESUUWWWNNEEDSSWSUUNN	2-23	DDDEESUUWWWNNEESDSWSUUNN
2-24	DDDEEUSUWWDWNNEESSSUUNNW	2-28	DDDEEUSUWWWDNNEESSSUUNNW
2-29	DDDEEUSUWWWDNNEESSSUUNWN	2-32	DDDEEUSUWWWDNNEESSWSUUNN
2-33	DDDEEUSUWWWNDNEESSSUUNNW	2-35	DDDEEUSUWWWNDNEESSWSUUNN
2-48	DDDEEUUSWWWDNNEESSWSUUNN	2-49	DDDEEUUSWWWNDNEESSWSUUNN
2-50	DDDEEUUSWWWNNEEDSSSUUNNW	2-54	DDDEEUUWSWWDNNEESSWSUUNN
3-1	DDDEENUUWSSDDDNNUUSEUUWW		

the NEWSUD form are provided in the appendix (after table A1) for each prime knot with ten crossings or less.

5.1. The case of the trefoil knot revisited

We found 75 canonical lattice polygons, partitioned into three type 0 equivalence classes, for the trefoil knot. Table A3 in the appendix lists all canonical lattice trefoils: canonical lattice polygons 1-1 to 1-18 are in the first equivalence class; polygons 2-1 to 2-56 are in the second equivalence class; 3-1 is in the third. The canonical lattice polygon 3-1 is taut.

Using the algorithm proposed in [9], Diao enumerated (up to translation) all lattice polygons with 24 steps which are trefoil knots (in [10]: see p 1253, figure 8). It is easily verified that each case in Diao's enumeration is contained in our 75 canonical lattice polygons. See the data in the appendix for details (table A3 and its accompanying figures). However, we found that some lattice polygons in [10] were counted twice (for instance one lattice polygon in figure 8(c) can be obtained from one in figure 8(f) after a suitable rotation is applied) and some were omitted. More precisely, there are 27 canonical lattice polygons that were not counted in [10]. These are listed in table 1 and three of them are illustrated in figure 5. A complete list of these 75 canonical lattice polygons and their geometric representations is given in the appendix in table A3, and in the figures below the table.

Since each of the 75 canonical lattice polygons has 24 rotations, one may expect $75 \times 24 = 1800$ different minimum step lattice polygons (up to translation only). However,

some of the canonical lattice polygons exhibit geometric symmetries. For example some rotated versions overlap (i.e. are not distinct lattice polygons). Eliminating such duplicates results in 1664 distinct lattice polygons. Taking reflections into account, we obtain $2 \times 1664 = 3328$ lattice polygons. We thus report that the total number of minimum step distinct lattice polygons (up to translation) should be 3328, not 3496 as reported in [10].

5.2. The cases of 4_1 and 5_1 knots

Our numerical results confirm the analytical results of [16, 17]. That is, the 4_1 and 5_1 knots have minimum step numbers of 30 and 34, respectively. It is interesting to note that 4_1 has only 76 minimum step number canonical lattice polygons, and 5_1 has twice as many (142). This results (after eliminating duplicates and taking reflections into account) in a total number of 1824 minimum step 4_1 lattice polygons, and 6672 minimum step 5_1 lattice polygons (up to translation).

5.3. Minimum step lattice polygons up to translation

As illustrated in section 5.1, the number of minimum lattice polygons up to translation is easily derived from the number of minimal step canonical lattice polygons by the following steps. First, for each canonical lattice polygon, represented as a NEWSUD string, produce all 24 rotated versions as NEWSUD strings. For example for the 3₁ knot, this results in a list with $24 \times 75 = 1800$ NEWSUD strings. However, many of these might represent the same lattice polygon. In order to eliminate duplicates, we run the list through the standarization algorithm, without the rotation phase (i.e. standardize according to orientation and shifts only). The number of unique NEWSUD strings after this last step is the number of lattice polygons up to translation. For the knots 3₁, 4₁ and 5₁, the numbers are 1664, 1824 and 3336, respectively. However, because we examined only one chirality for each chiral knot, in those cases the number of polygons needs to be doubled. This results in the total number of lattice polygons (up to translation) being 3328, 1824 and 6672 for the knots 3₁, 4₁ and 5₁, respectively.

Upon request, the authors can provide numerical estimates for the total number of minimum step lattice polygons up to translation for all prime knots with ten or less crossings. The process of eliminating duplicates has been fully automated. It is worth noting that these estimates are based on our numerical approach. Although these are very good approximations, this is still not an exhaustive enumeration. Implementation of the exhaustive enumeration algorithm presented in section 3 and in [16, 17] is left for a future publication.

5.4. Improvement over published data

Our calculations offer improvements over some of the minimum step bounds proposed in [15, 18]. The following knots were found to have lattice polygon representations of 50 steps, improving the 52 reported in [18]: 8_8 , 8_{10} , 8_{11} and 8_{14} . A minimum step number bound of 46 for 8_{20} was reported in [15], and we improved that to 44.

A list of estimations on the total number of knot types that a lattice polygons with a given step number can realize was given in [18]. Table 2 shows an updated list based on our data.

5.5. Further observations

It is interesting to see the large range for the number of canonical lattice polygons within knots with the same crossing numbers. For instance, in the eight crossing family of knots, our search

Table 2. Numerical estimates on *n*, the number of prime knot types realizable by a lattice polygon with step number up to *s*.

s	4	24	30	34	36	40	42	44	46
n	1	2	3	4	5	8	9	14	18
s	48	50	52	54	56	58	60	62	64
п	22	40	49	74	119	130	175	244	250

Table 3. Crossing numbers and minimum step numbers of prime knots

Crossing number	Alternating	Non-alternating
3	24	_
4	30	_
5	34–36	_
6	40	_
7	44-46	_
8	48-52	42–46
9	54–58	48-52
10	58–64	48–58

found only one realization for 8_3 and 8_7 , while for other knots like 8_2 , we found almost 2000. This range seems to grow rapidly. For example, we only found one canonical lattice polygon for 9_{31} , 10_{72} and 10_{123} . On the other hand, we found 152 374 canonical lattice polygons for $10_{140}!$

Table 3 summarizes our numerical finding on the relationship between the class of knots with a given crossing number and the range of step numbers needed for the lattice polygons to realize these knots. This limited study seems to indicate that the non-alternating knots generally require less steps in their lattice polygon realizations.

5.6. Minimum stick numbers via the canonical lattice polygons

We also studied the minimum stick number of a knot using its corresponding canonical lattice polygons. The (lattice) *stick number* of a knot type \mathcal{K} is the number of (straight) edges, not necessarily of unit length, required to construct a representative of \mathcal{K} in \mathbb{Z}^3 . An estimate of the stick number of knot type \mathcal{K} can be obtained using the canonical lattice polygons of \mathcal{K} described above, by simply counting the number of times the lattice polygon of the knot changes direction in all of the NEWSUD strings for a given knot. There exist minimum stick representatives of a knot that do not correspond to canonical polygons (of minimum step) when their edges are subdivided into edges of unit length. For knots up to eight crossings (plus a few others), we ran a separate experiment. We set the BFACF *z* parameter randomly within the range (0.13, 0.19), performed 100 000 iterations of the BFACF algorithm, and then performed all possible type (-2) moves and finally counted the number of direction changes. These steps were repeated until a candidate was found or a time limit (several hours) was reached. This method produced new minimum stick candidates for the knot types $5_1, 5_2, 6_1, 6_3, 7_2, 7_3, 7_4, 7_5, 7_6, 7_7, 8_2, 8_3, 8_4, 8_5, 8_7, 8_{19}$ and 10_{27} . Our numerical results also

confirm the known theoretical results for 3_1 and 4_1 (12 and 14, respectively) shown in [14]. A complete list of our findings on the stick numbers is given in table A2 in the appendix.

6. Conclusion

Knots in biopolymers, such as closed DNA molecules and open polypeptide chains (proteins) can be engineered in the laboratory. In this context, it is natural to ask what is the minimum number of monomers (nucleotides for DNA and residues for proteins) needed to form a given knot. We have addressed this question using the simple cubic lattice as a model. We propose new analytical tools that improve current published results in the sense that the process of finding the minimum step number is made more efficient. Our data include new minimum step number and minimum stick number bounds. These improvements allowed us to determine the minimum step number for 4_1 and 5_1 . We have improved some current analytical and numerical results in the estimations on the number of canonical lattice polygons of a given knot type. For instance, we have numerically found that there are a total of 75 different canonical lattice polygons that are trefoils, some of which were not counted before. Our numerical study was broad enough to cover all prime knots up to ten crossings. However, we need to point out that our results (analytical and numerical) are obtained by enumerating all possible lattice polygons (of the given knot type), it will be difficult to use the same method to generalize these results to knots that exhibit more realizations (as shown by our simulations), such as the 5_2 knot, which has 2362 canonical lattice polygons. More powerful analytical results will be needed in order to reduce the possibilities in the enumeration process.

Acknowledgments

Support for this work came from NSF grant DMS-0712958 (YD), NIH grants 2S06GM052588 (MV and RS), NIH 2S06GM52588-12 (JA) and NSF DMS-0920887 (RS). Additional support came from the Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Scientific Research (C) 18540069 (KS). K Ishihara is partially supported by a Fellowship from the Japanese Society for the Promotion of Science for Japanese Junior Scientists.

Appendix

Table A1. The knot types are given in column **K**, the minimum step number bounds are given in column **S**, the numbers of conformations found in phase 1 are given in column **R**, the total numbers of conformations found in phases 1 and 2 are given in column **E** and the numbers of type 0-equivalent classes are given in column **C**.

K	S	R	Е	С	К	S	R	Е	С	К	S	R	Е	С
01	4	1	1	1	9 ₄₉	52	751	751	21	1084	62	549	549	35
31	24	75	75	3	101	60	7512	9 649	76	1085	60	25	25	4
41	30	76	76	2	10_{2}	60	9 549	18 152	266	1086	60	3	3	1
51	34	142	142	7	103	58	5	5	1	1087	62	1767	1885	56
52	36	2 3 9 6	2 396	28	104	60	2550	2 5 7 8	86	1088	62	1833	1858	19
61	40	129	129	5	105	58	10	10	2	1089	62	1 2 5 5	1 2 5 5	26
62	40	684	684	18	106	60	45	45	1	1090	64	15416	61 324	347
63	40	74	74	6	107	62	13 560	44 197	588	1091	62	4917	5 4 3 5	53

J. Phys. A: Math. Theor. 42 (2009) 475006

R Scharein et al

		T	Table A1.	(Conti	nued.)									
к	s	R	Е	С	K	s	R	Е	С	К	s	R	Е	С
71	44	712	712	31	10_{8}	60	3 096	3 2 1 3	61	1092	62	183	183	8
7 ₂	46	6941	7 011	111	109	60	3 4 2 9	3 644	72	10_{93}	62	1 528	1 542	37
73	44	10	10	1	10 ₁₀	60	1744	1 767	85	1094	62	1 797	1 797	41
74	44	4	4	2	1011	60	101	101	3	1095	62	76	76	8
75	46	197	197	8	1012	60	277	277	10	1096	64	3 9 2 3	4 202	67
76	46	709	709	19	1013	62	172	172	5	1097	62	6	6	1
17	44 50	11	11	12	1014	60	12	12	4	1098	62	26	26	2
8 ₁	50	495	495	13	1015	60	235	235	/	1099	62	54	54	12
82 0	50 49	1910	1910	38	1016	50	40	40	4	10100	62	052	42	12
03 8.	40 50	1 007	1 007	32	1017	50 60	21	21	1	10101	62	42	42	16
84 85	50	24	24	4	1018	60	1 200	1 306	42	10102	62	4 603	4 918	23
8	50	230	24	2	1019	60	82	82	42	10103	62	721	721	12
87	48	250	250	1	1020	60	291	291	15	10104	62	67	67	4
8.	50	65	65	3	1021	60	715	715	7	10105	62	1055	1 0 5 6	25
80	50	735	735	8	1022	60	787	787	11	10107	62	37	37	11
810	50	35	35	1	1023	62	2 770	2917	35	10107	60	161	161	14
811	50	4	4	2	1025	62	1 3 5 1	1 422	29	10100	64	3 829	4 062	108
812	52	54	54	2	1026	62	10374	22 4 50	136	10110	62	4	4	2
813	50	544	544	22	1027	60	35	35	4	10111	62	221	221	24
814	50	15	15	2	1028	60	155	155	10	10112	60	20	20	2
815	52	1674	1 676	37	1029	62	926	926	50	10113	60	2	2	2
816	50	2	2	1	1030	60	35	35	2	10114	62	896	900	26
817	52	1 108	1 108	37	1031	60	5	5	1	10115	62	10	10	3
818	52	74	74	2	1032	62	6631	10 037	184	10116	62	641	641	10
819	42	304	304	14	1033	60	1 1 8 4	1 1 9 0	12	10117	62	93	93	9
820	44	5	5	1	1034	60	115	115	5	10118	64	2 2 9 6	2 3 3 0	67
821	46	1 168	1 168	10	10_{35}	62	271	271	16	10_{119}	62	28	28	2
9 ₁	54	6 899	7 211	149	10_{36}	60	320	320	18	10_{120}	64	358	358	18
9 ₂	56	33 673	68 360	564	10 ₃₇	62	4844	6106	30	10121	60	40	40	3
9 ₃	54	105	105	3	10_{38}	62	3 349	3 4 8 4	43	10_{122}	62	1 197	1 197	12
9 ₄	54	26	26	6	10_{39}	62	3 408	3 549	73	10_{123}	60	1	1	1
9 ₅	54	35	35	3	10_{40}	62	1 0 8 2	1 0 9 3	34	10124	48	16	16	2
9 ₆	56	165	165	9	1041	62	7 006	10 021	77	10125	54	1 659	1 668	89
9 ₇	56	3 670	3 670	33	1042	60	42	42	6	10126	54	9	9	2
9 ₈	56	2437	2 4 3 8	66	1043	62	3 342	3 597	64	10127	56	3 569	3 905	38
9 ₉	56	251	251	12	1044	60	266	266	19	10128	54	95/8	15 296	15/
9 ₁₀	56	2033	2 0 3 3	10	1045	60	221	221	16	10129	54	13 639	90 5 / 4	150
9 ₁₁	56	12/4	12/4	27	1046	60	14	14	10	10130	56	151	151	4
912 0	56	607	607	29	1047	60	30	30	4	10131	52	404	404	20
913 Q.,	54	71	71	23 5	1048	62	6744	11,000	134	10132	54	1 258	1 261	15
915	58	30.245	50 726	384	1049	62	4 6 6 6	6141	97	10133	56	9 563	14 794	142
9 ₁₆	56	205	205	16	1051	62	592	592	13	10134	58	16 627	109 823	381
9 ₁₇	56	2 607	2 607	68	1052	62	4 3 3 2	5 2 5 8	100	10126	54	558	558	25
9 ₁₈	58	11071	11 495	163	1053	62	2 273	2 500	30	10137	56	5758	8 108	62
919	54	20	20	1	1054	60	50	50	1	10138	56	20	20	1
9 ₂₀	56	4689	4771	65	1055	62	1 2 2 6	1 2 2 6	14	10139	50	335	335	11
9 ₂₁	56	477	477	9	1056	62	899	902	18	10140	54	17772	152 374	247
9 ₂₂	56	361	361	14	1057	62	268	268	10	10141	54	917	918	11
9 ₂₃	58	11 247	11736	122	1058	62	187	187	14	10142	54	69	69	6
9 ₂₄	56	422	422	16	1059	62	1 163	1 1 6 4	43	10143	54	415	415	3
9 ₂₅	58	10689	11 245	162	1060	62	1778	1 866	36	10_{144}	58	16 600	142 772	294
9 ₂₆	54	69	69	7	1061	60	126	126	5	10145	52	276	276	5
9 ₂₇	56	1 4 2 9	1 4 2 9	68	1062	60	80	80	2	10_{146}	56	4 4 5 0	5 659	47
9 ₂₈	56	105	105	12	1063	62	2 3 6 0	2 387	47	10_{147}	54	168	168	1
9 ₂₉	56	8	8	2	1064	62	10607	24 697	106	10_{148}	56	5 308	8 6 2 4	49
9 ₃₀	56	93	93	9	1065	62	5 2 3 8	6 960	88	10149	56	1 295	1 322	28
9 ₃₁	54	1	1	1	1066	62	5 080	8 6 7 5	91	10150	56	5 981	7 969	39
932	56	228	228	10	1067	62	1 0 5 0	1 0 5 0	17	10151	56	251	251	10

J. Phys. A: Math. Theor. 42 (2009) 475006

		1	able A1. (Contin	ued.)									
К	S	R	Е	С	K	s	R	Е	С	K	s	R	Е	С
9 ₃₃	56	122	122	8	1068	62	7 4 7 8	12 093	89	10152	54	414	414	15
9 ₃₄	56	6	6	2	1069	60	2	2	1	10153	54	768	768	3
9 ₃₅	56	847	847	28	1070	62	429	429	16	10154	56	1 502	1 503	5
9 ₃₆	56	310	310	10	1071	62	141	141	14	10155	54	530	530	3
9 ₃₇	56	97	97	4	1072	60	1	1	1	10_{156}	56	3 2 9 2	3 386	51
9 ₃₈	58	44	44	6	1073	60	30	30	4	10157	54	2	2	2
939	58	5 990	6 0 6 6	60	1074	62	4 588	5 608	126	10158	56	11	11	4
9 ₄₀	54	7	7	1	1075	62	1216	1216	43	10159	56	4 0 0 2	4 6 4 4	15
9 ₄₁	54	3	3	2	1076	62	4285	4 686	30	10_{160}	56	14947	46794	161
9 ₄₂	48	578	578	16	1077	62	5 2 9 0	6711	144	10161	50	18	18	1
9 ₄₃	50	6477	6 5 3 1	30	1078	62	1612	1 6 2 1	78	10162	56	32	32	5
9 ₄₄	50	3 6 5 3	3 653	25	1079	62	721	721	5	10163	56	612	612	12
9 ₄₅	52	11067	13 609	92	10_{80}	62	319	319	4	10_{164}	56	467	467	13
9 ₄₆	50	42 892	124 406	136	10_{81}	64	8 5 3 7	16 708	150	10_{165}	56	44	44	2
9 ₄₇	50	285	285	2	1082	60	7	7	1					
9 ₄₈	52	1 903	1 903	14	1083	62	3 108	3 4 1 3	125					

Table A2. The knot types are given in column **K**, the minimum stick number bounds are given in column **S**, the number of distinct conformations found are given in column **C**. A superscript *k* on a number in column **S** is the difference between the minimum stick number found using only the minimum step number candidates and the minimum stick number produced by the separate search outlined in subsection 5.6. For example, the separate search produced a 5_1 knot of 16 sticks and an 8_{14} knot of 22 sticks.

K	S	С	K	S	С	K	S	С	K	S	С	K	S	С
$\overline{0_1}$	4	1	9 ₁₅	24	15	1016	29	8	1066	24	2	10116	25	24
31	12	7	9 ₁₆	23	1	10_{17}	27	2	10_{67}	26	4	10117	26	8
41	14	6	9 ₁₇	21	21	10_{18}	27	2	10_{68}	24	11	10_{118}	24	10
51	17^{1}	2	9 ₁₈	24	6	1019	25	17	10_{69}	27	1	10119	25	2
52	17^{1}	50	9 ₁₉	25	4	10_{20}	29	8	10_{70}	26	6	10_{120}	25	1
61	19 ¹	3	9 ₂₀	22	6	1021	26	12	10_{71}	28	6	10121	24	2
62	17	6	9 ₂₁	25	8	10_{22}	26	4	10_{72}	27	1	10_{122}	21	1
63	18 ¹	9	9 ₂₂	24	12	10_{23}	25	14	10_{73}	26	3	10123	20	1
71	21^{1}	3	9 ₂₃	24	2	10_{24}	27	8	10_{74}	25	6	10_{124}	22	6
72	21^{1}	38	9 ₂₄	24	6	10_{25}	26	18	10_{75}	24	9	10125	24	18
73	22^{1}	2	9 ₂₅	24	6	1026	25	6	10_{76}	28	16	10126	27	4
74	20^{1}	1	9 ₂₆	23	1	10_{27}	28 ¹	8	10_{77}	27	22	10_{127}	24	1
7_{5}	22^{1}	4	9 ₂₇	22	18	10_{28}	24	6	10_{78}	26	8	10_{128}	24	10
76	20^{1}	9	9 ₂₈	25	5	1029	28	12	1079	27	16	10129	23	2
77	19 ¹	3	9 ₂₉	26	2	10_{30}	28	4	10_{80}	28	18	10_{130}	24	3
81	23	12	9 ₃₀	23	4	10_{31}	27	2	10_{81}	26	44	10_{131}	24	2
82	21^{1}	12	9 ₃₁	24	1	1032	24	4	10_{82}	27	2	10_{132}	21	1
83	24^{1}	1	9 ₃₂	23	1	1033	25	6	10_{83}	23	1	10133	24	16
84	22^{1}	6	9 ₃₃	22	2	1034	28	8	10_{84}	24	3	10_{134}	23	3
85	24^{1}	8	9 ₃₄	21	1	1035	30	23	10_{85}	26	2	10135	23	3
86	23 ¹	8	9 ₃₅	24	4	10_{36}	26	6	10_{86}	24	1	10136	21	3
87	23 ¹	1	9 ₃₆	25	2	1037	28	48	10_{87}	24	2	10137	22	2
88	24 ¹	12	9 ₃₇	24	9	10_{38}	27	6	10_{88}	22	9	10_{138}	26	4

J. Phys. A: Math. Theor. 42 (2009) 475006

			Table A2	2. (Cor	itinued	.)								
K	S	С	K	S	С	K	S	С	K	S	С	K	S	С
89	22 ¹	6	9 ₃₈	25	1	1039	26	11	1089	25	4	10139	20	1
810	22	4	9 ₃₉	24	9	10_{40}	26	6	1090	25	9	10_{140}	21	1
811	25^{1}	2	9 ₄₀	18	1	10_{41}	26	19	1091	25	9	10141	21	1
812	26^{2}	7	9 ₄₁	21	1	10_{42}	26	4	10_{92}	28	10	10142	24	4
813	21^{1}	25	9 ₄₂	20	4	10_{43}	24	9	1093	27	23	10143	23	8
814	25 ³	4	9 ₄₃	21	32	10_{44}	23	9	1094	25	8	10144	23	2
815	22^{1}	18	9 ₄₄	21	41	10_{45}	23	1	1095	28	4	10145	22	3
816	23	1	9 ₄₅	21	14	10_{46}	28	19	10_{96}	27	16	10_{146}	22	13
817	20	6	9 ₄₆	20	5	10_{47}	28	4	1097	30	1	10_{147}	24	8
818	20	7	9 ₄₇	18	6	10_{48}	28	4	10_{98}	29	4	10_{148}	24	10
819	20^{1}	24	9 ₄₈	23	24	10_{49}	26	30	1099	28	2	10_{149}	22	1
820	19 ¹	2	9 ₄₉	20	2	10_{50}	27	2	10_{100}	27	6	10_{150}	22	8
821	20^{1}	18	101	29	87	10_{51}	28	16	10_{101}	27	3	10151	23	2
9 ₁	27	24	10_{2}	27	39	10_{52}	26	23	10_{102}	25	8	10_{152}	24	3
9 ₂	26	15	103	28	2	10_{53}	26	7	10_{103}	25	16	10_{153}	24	33
9 ₃	26	10	10_{4}	27	17	10_{54}	28	4	10_{104}	25	1	10_{154}	25	60
9 ₄	26	2	105	27	4	10_{55}	28	29	10_{105}	28	9	10_{155}	23	2
9 ₅	24	4	10_{6}	29	4	10_{56}	27	4	10_{106}	25	2	10_{156}	22	11
9 ₆	26	10	107	27	18	10_{57}	28	13	10_{107}	26	1	10_{157}	24	2
9 ₇	25	12	10_{8}	27	60	10_{58}	28	3	10_{108}	25	2	10_{158}	25	3
9 ₈	23	18	109	26	28	1059	26	2	10_{109}	26	4	10_{159}	23	34
9 ₉	25	11	10_{10}	25	6	10_{60}	26	10	10_{110}	30	2	10_{160}	22	8
9 ₁₀	24	4	10_{11}	27	1	10_{61}	28	16	10111	26	8	10_{161}	23	2
9 ₁₁	26	23	10_{12}	25	2	10_{62}	26	4	10_{112}	24	4	10_{162}	24	4
9 ₁₂	25	6	10_{13}	30	13	10_{63}	26	12	10_{113}	24	2	10_{163}	21	6
9 ₁₃	23	1	10_{14}	28	2	10_{64}	26	11	10_{114}	23	2	10_{164}	20	1
9 ₁₄	23	6	10_{15}	28	18	10_{65}	25	4	10115	27	2	10_{165}	23	4

Table A3. The complete list of 75 canonical lattice polygons of step number 24 that are trefoil knots. Their geometric realizations are provided after the list.

1-1	DDDEENUUWSSDWWNNEESEUUWW	1-2	DDDEENUUWSSWDWNNEESEUUWW
1-3	DDDEENUUWSSWWDNNEESEUUWW	1-4	DDDEENUUWSSWWNDNEESEUUWW
1-5	DDDEENUUWSSWWNNDEESEUUWW	1-6	DDDEENUUWSSWWNNEDESEUUWW
1-7	DDDEEUUWSWDWNNEESSEUUWNW	1-8	DDDEEUUWSWDWNNEESSEUUWWN
1-9	DDDEEUUWSWWDNNEESSEUUWNW	1-10	DDDEEUUWSWWDNNEESSEUUWWN
1-11	DDDEEUUWSWWNDNEESSEUUWNW	1-12	DDDEEUUWSWWNDNEESSEUUWWN
1-13	DDDEEUUWSWWNNDEESSEUUWNW	1-14	DDDEEUUWSWWNNDEESSEUUWWN
1-15	DDDEEUUWSWWNNEDESSEUUWNW	1-16	DDDEEUUWSWWNNEDESSEUUWWN
1-17	DDDEEUUWSWWNNEEDSSEUUWNW	1-18	DDDEEUUWSWWNNEEDSSEUUWWN
2-1	DDDEESUUWWDWNNEESSSUUNNW	2-2	DDDEESUUWWDWNNEESSSUUNWN
2-3	DDDEESUUWWDWNNEESSSUUWNN	2-4	DDDEESUUWWDWNNEESSSUWUNN

Table	A3. (Continued.)		
2-5	DDDEESUUWWDWNNEESSSWUUNN	2-6	DDDEESUUWWWDNNEESSSUUNNW
2-7	DDDEESUUWWWDNNEESSSUUNWN	2-8	DDDEESUUWWWDNNEESSSUUWNN
2-9	DDDEESUUWWWDNNEESSSUWUNN	2-10	DDDEESUUWWWDNNEESSSWUUNN
2-11	DDDEESUUWWWDNNEESSWSUUNN	2-12	DDDEESUUWWWNDNEESSSUUNWN
2-13	DDDEESUUWWWNDNEESSSUUWNN	2-14	DDDEESUUWWWNDNEESSSUWUNN
2-15	DDDEESUUWWWNDNEESSSWUUNN	2-16	DDDEESUUWWWNDNEESSWSUUNN
2-17	DDDEESUUWWWNNDEESSSUUWNN	2-18	DDDEESUUWWWNNEDESSSUWUNN
2-19	DDDEESUUWWWNNEDESSSWUUNN	2-20	DDDEESUUWWWNNEDESSWSUUNN
2-21	DDDEESUUWWWNNEEDSSSWUUNN	2-22	DDDEESUUWWWNNEEDSSWSUUNN
2-23	DDDEESUUWWWNNEESDSWSUUNN	2-24	DDDEEUSUWWDWNNEESSSUUNNW
2-25	DDDEEUSUWWDWNNEESSSUUNWN	2-26	DDDEEUSUWWDWNNEESSSUWUNN
2-27	DDDEEUSUWWDWNNEESSSWUUNN	2-28	DDDEEUSUWWWDNNEESSSUUNNW
2-29	DDDEEUSUWWWDNNEESSSUUNWN	2-30	DDDEEUSUWWWDNNEESSSUWUNN
2-31	DDDEEUSUWWWDNNEESSSWUUNN	2-32	DDDEEUSUWWWDNNEESSWSUUNN
2-33	DDDEEUSUWWWNDNEESSSUUNNW	2-34	DDDEEUSUWWWNDNEESSSUUNWN
2-35	DDDEEUSUWWWNDNEESSWSUUNN	2-36	DDDEEUSUWWWNNEDESSSUUNNW
2-37	DDDEEUSUWWWNNEDESSSUUNWN	2-38	DDDEEUSUWWWNNEEDSSSUUNNW
2-39	DDDEEUSUWWWNNEEDSSSWUUNN	2-40	DDDEEUSUWWWNNEEDSSWSUUNN
2-41	DDDEEUSUWWWNNEESDSSUUNNW	2-42	DDDEEUSUWWWNNEESDSSUUNWN
2-43	DDDEEUSUWWWNNEESDSSWUUNN	2-44	DDDEEUSUWWWNNEESDSWSUUNN
2-45	DDDEEUUSWWDWNNEESSSUUNNW	2-46	DDDEEUUSWWDWNNEESSSWUUNN
2-47	DDDEEUUSWWWDNNEESSSUUNNW	2-48	DDDEEUUSWWWDNNEESSWSUUNN
2-49	DDDEEUUSWWWNDNEESSWSUUNN	2-50	DDDEEUUSWWWNNEEDSSSUUNNW
2-51	DDDEEUUSWWWNNEESDSSUUNNW	2-52	DDDEEUUSWWWNNEESDSSUUNWN
2-53	DDDEEUUSWWWNNEESDSWSUUNN	2-54	DDDEEUUWSWWDNNEESSWSUUNN
2-55	DDDEEUUWSWWNDNEESSWSUUNN	2-56	DDDEEUUWSWWNNDEESSWSUUNN
3-1	DDDEENUUWSSDDDNNUUSEUUWW		

Table A4. Examples of potential minimum step number lattice polygons representing prime knots up to ten crossings.

K NEWSUD Form

- 01 DEUW
- 3₁ DDEEUUWSWWNNEDESSEUUWWN
- 41 DDDDEEUUWUNNDDSSSUWWNNEEEUUWWS
- 5₁ DDDEEUUSSUUNWNDDSWWNNEDESSEEUUWWWN
- 52 DDDEEESSWWNDNNUUUSSEDDDSWWNUUENEUUWW
- 61 DDDEEENNWWUSSSWWNNUEESSEENDNWDDSSUUNUUWW
- 62 DDDEDNNUUSSSWDWNNNUUSEEEDDWWDWWUUEENUUSS
- 63 DDDDEENUUUWWWSDSEENNNNDDSSUSEENNWWWUUUSS
- 71 DDDEESSWWSUUNNDDWWUUENNEESDSDDSSUUNWWNNWUUEE
- 72 DDDEEUUNUUSSDWWDWNNEESSSUUNNDEEDNDWWSSWSWUUNNE
- 7₃ DDDEENUUUWWDDDWWUUESSEENNNEESSWDWNNWWSSWUUEE
- 74 DDDDDEEUUWSSUUNNNEDDWWWSSUEEEDDWNNNUUSSEUUWW
- 75 DDDDEEUUUSWWWNNEENDDSSSEENUNWWWNUUSESDDSSUUNWN
- 76 DDDDDEEUUUUWSSDDNNUNNDDSSSEENNUWWWSSEUEEUUWNW
- 77 DDDDEEENUNWWSSSSUUNNNEDDDDSSUUUWWWNNEESEUUWW
- $8_1 \qquad {\tt DDDDEEUUEESSWWWNNWWUSSEEEDDSESUUNNDDNNWWSSSWUUUNN}$
- 82 DDDDEDNNUUSSSWWNNENNUUSSESSDWWNNEEEDDWWWNUUEEUUSWS
- 83 DDDEEUUENNWWSSSWWNNWDDEEUUUEEDDESSWWNNNWWSSWUUEE
- 84 DDDDEEDNNUUSSUUSWWWNDNEEEEDDWWDSSUUNNNUUSSDSWSUUNN
- 85 DDDDEEUNNNWWSSWWUUEEENDDDWWUUSSDSEENNDEEUUWWWNUUSS
- $8_6 \qquad {\tt DDDDEEUUSUWWWNNEEENDNWWSSEEDESSWWNNNUUUSSDDSWSUUNN}$
- 87 DDDDEEDSSUUNNNUUWSSSDDNNNDDSSUEEUUWWWWNNEESEUUWW

K	NEWSUD Form
88	DDDDEEUUWSWWNNEEENNUWWSSEESESSWWNNUNNDDDSSSEUUUWWN
89	DDDDEEEUNUWWWWSSEENEESSWUWNNNNDDSSSDEDNNUUSSUUNUWW
810	DDDDEEUUUSWWWNNEEENDNWWSSEEESSWWNUUNNDDDSSSWUSUUNN
811	DDDDDEEUUWNNEESSSWWSUUNNNEDDDWSSESUUNWWWNNEESEUUWW
812	DDDDEEUNUUWWWNNEESDSSEENNWDWWSUWWDDEEEUSSWWNNNUEUUSS
813	DDDDDEESUUUUWWWNNDEESSSSDDNNNNWWUSSEENEESSWWWUUUNN
814	DDDDDEEUUSUWWWNNEEENDDSWSSEENUNWWNUUSSSSDDNNUEUUWW
815	DDDDDEEUUUWNNNDDSSSSEENNNWUWWWUUSEEEDDWSSWWNUNENUUSS
816	DDDDEESUUENNWWWSSEESSDDNNUNNNUUSSSSWDDEEENNWUUUWW
817	DDDDEEEUUNWWWWSSEEEDDWWSUUUNENNNDDSSSSDDNNNEUUSUUUWW
818	DDDDDEEUUUNUWWWDWDDEEESSSUUNNNNDWWSSSEEEENNWWWUNUUSS
819	DDDDEESUUUWNNWDDWSSSEUENNNNWWSSSEDENEUUUWW
820	DDDDDEEUUUWSWWNNEEEDDWSSSUUUNNNNDDSSSEUUUWNW
821	DDDDEESUUUWWWNNEEEDDSWSWUWSSEENNNNDWWSSSEUUUNN
9 ₁	DDEEDDNNDWWUUNNWWSSEUUSEESSDDNNEEDDWWUNNWWUUWSSEENUUSS
9 ₂	DDDEENEESSEUUWNWDDDNWWUUSSWWUNNEESSEEDDDEENUUWSSWWNNUUWW
9 ₃	DDDEEEDDSWWWUUEEEUUWWNNWWSSDEENNDDSSSDDENNUUSSUUNNUUWW
9 ₄	DDDEEUEESSWWNUUWWDDDWWUUENNEESSSEENDDNNWUWSSSWWNNWUUEE
9 ₅	DDDDDEEEUUWWSSUUNNNEDDWWUWSSEEEDDNNDWDSSUUNNNUUSSEUUWW
9 ₆	DDDDEEEUUWWSSUUNNDNNDDSSSDDNENUUSSUUWWWNNEUEEDDWWWWUSUEE
9 ₇	DDDEEDDWWWDDEESUUWWUUEEEUUWWSDDDNNNDDSSSEUUNNNUUSSSUUNNW
9 ₈	DDDDDEEUUNUUWSSSDDEDDWWUUNEEDENNWWSSSSEUUNNWWWNNEESEUUWW
9 9	DDDDEEDNNUUSSUSUWWWNNEENDDSSSDDNNUEEUUWWWNUUSESDDSSWUUNN
9 ₁₀	DDDDEEUUSSEENNWNWWWNNEESUSWWWSSEEEEDDWWNNNUUUSSDDSWSUUNN
9 ₁₁	DDDDEEUUESSWWNNNWWSSSDEENNNEESSWUUWWUSSDDNNDWWUUESEEUNNW
9 ₁₂	DDDDEEDSSUUNNNUUWSSWWWDDEEUEEEDDWWDNNUUSSSWWUNNNEESEUUWW
9 ₁₃	DDDDEENUUWWDDWWUUENNEEEUSSWWWNWDDESSSEENNNUUNNDDSWSUUUSS
9 ₁₄	DDDDEEEUUWWSWWNNEEEEUUSSWDDDNNDDWSSUUNNNUUSSSSEENNWUWW
9 ₁₅	DDDDEDSSUUNNNWWNUUSSSWWNNEDEENDDWSSUUSSDDNEEEUUWWDWWUNUUEE
9 ₁₆	DDDDDEEUUWNNUUSSDSSDDNNNEUUWWWSSESSWWNNUEEEEDDWWSWUUUNEN
9 ₁₇	DDDDDEEUUUUNWWWNDDESDESSEUENNWWSSSUUNNDNEESSWWWWNNENUUSS
9 ₁₈	DDDDEEUUNEESSWWWWSUUEENNEDDDNWWSSSUUNWWNNEESUUSEEDDWNNUWWS
9 ₁₉	DDDDDEEUUSUWWWNNEEENNDWWSSEEDESSWWNNNUUUSSSSDDNNUEUUWW
9 ₂₀	DDDDDEEUUWNNUUSSSSWDDDENNNEUUWWWSSSSEDENNWWWUUEEDEEUUWWN
9 ₂₁	DDDDDEEUUUUNWWWNDDSSSEEESUUNWNDNEESSWWSDDNNNWWWUUEENUUSS
9 ₂₂	DDDDEEENNWWWWUSSSEENNNNDEDSSUUUUWWWSSEDENNWWWDDEEUNUUUSS
9 ₂₃	DDDDEENUUUUNNDDWSSSSWWNNNDDEESUSEENNWWWSWWUUEEESEENNWWUSSW
9 ₂₄	DDDDDEEUUWUNNDDSSSSUUUWNWWDDEEEESSWWUNNEENNDWWWSUSSUUNEN
9 ₂₅	DDDDDEEUUWSWWNNNUUSEEEDDWWDDNNUUSUSWWNDDEEESSSSUUNNNNUUSSW
9 ₂₆	DDDDEEEESSWUWNNENNWWSSSSUUNNNEDDDDSESUUUWWWWNNEESEUUWW
9 ₂₇	DDDDEEEENNWWWUUUSSSSDDNNNWNNEESSSSDEDNNUUUWWWWSSEEEUNUWW
9 ₂₈	DDDDDEEUUNUUWSSSDDDNNNEESSUWWWWWUUEEDEESSWWNWNNNEESEUUWW
9 ₂₉	DDDDEESUUUWNNUEEDDDSSSWWNNNNUEEESSWWWSWWNNEEEDNNUUSSSUWW
9 ₃₀	DDDDDEEUUWNNWWUSSSEDEEEUNNNWWSSSSDDNNNEUUUWWWWDDEEUNUUSS
9 ₃₁	DDDDDDEEUUWSWWNNEEEUUUWSSSDDNNNNDDSSSEUUUWWWNNEESEUUWW
9 ₃₂	DDDDEEENNWWUSSSSUUNNNNDEESSSWWWWNNEEEUNNDDSSDDSSUUNUUUWW

K	NEWSUD Form
9 ₃₃	DDDDDEEUNUWWWSSSWUUNEEEEDDWWDWWUUESSEENNNNNDDSSSSWUUUUNN
9 ₃₄	DDDDEEEEUUWNNDWWSSSSUUNNNEEEDDWSSUWWWWNNEEEDDDSSUUNUUUWW
9 ₃₅	DDDDEENUUUESEDDWWUUSWWWNNEENNDDSSSSWWNNUEESSEENNNWWWUUSS
9 ₃₆	DDDEEESSWUUNUEEDDWWDDNNUUUESSSUWWDNNNWWDSSEENNNEESSWUUWW
9 ₃₇	DDDDDEEUUUUNWWWDDEEESSEENNWDWSSSUUUNNDNEESSWWWWNNNUUSSE
9 ₃₈	DDDDEENUUESSWWSUUNNDDNNNDDSSUSSSEUUNWWWNNEEESDDENNWWWUUUSS
9 ₃₉	DDDDEEESSUWUUWNNNDEESSSSDWWNNNNWWSUSEEEUEEDDWWDDNNUUSUUUWW
9 ₄₀	DDDDDEEUUUSUWWWWDDEEEEENNWWWWUSSSSEENNNNNDDSSSSUWUUUNN
9 ₄₁	DDDDEEUNNNUUSSDWWWSSEEEUENNDDDWWUSSSUUNNNNDEEESSWWUUWW
9 ₄₂	DDDDEDNNUUSSSWUUWWNDNEEESSSWWNNUNEEEDDDWWNUUUUSS
9 ₄₃	DDDDEEUUSUWWWSSEEDNNNWDDWWSSUEEENNNWWSSDSSUEUUUNN
9 ₄₄	DDDDEESSUUNNUWUNNDDSSSSUEUNNNDWWWSSEEEEDDWWWSUUUNN
9 ₄₅	DDDDEEESUUWWWWNNDEESSSUEUUENNWDDDSSSWUUNNNNEESSWUWWN
9 ₄₆	DDDDEEDSSUUNNUWUSWWSSDEDENNNNWWSSUEEEEDDWWSWUUUUNN
9 ₄₇	DDDDDEEUUUUWNWDNDEDSSSSUUNNNNEESSSDWWWWNNEEEUUUWWS
9 ₄₈	DDDDEDNNUUSSSWUWUNNNDDSSSSUEUNENNEDDDWWWWUUEEESEUUWW
9 ₄₉	DDDDEESUUUWWDWWNNEESDSEENEUUWNWWSSSEDENNNWDWWSUUUEE
101	DDDEEDSSUUNNNEESSDWWWDNNUUSSWWNUNEESSUUENNDDSSEEEDDNWWUUUWWW
102	DDDDEESUUWWWNNEESEEUUUNWWWDDESSSDDNNENUUSSEENNWUWSUUNNDDWSSW
103	DDDEEEDDWWDSSUUNNNUUSSWWNNUEESSEEDDWWWDDEEDNNUUSSSUUNNUUWW
10_{4}	DDDDEEEUUWWDSSUUNNNWNNNEESSDDSSSUWWWNNEEEENNWWUUWWSDDEEUUWSS
105	DDDDEEDDSSUUUNNNUUWSSSDDNNNDDSSEESSWWNUNEEUUWWWWNNEESEUUWW
106	DDDDEEUUUSWWDDWWUUENNEEENNWWSDSEEESSDWWNNNUUUSSDDSSWWNNWUUEE
107	DDDEEDDNNUUUWSSSWWUNNEESSEUUNNDDSDSDWDNNEEEUUWWDWNNEESSSUUUWWW
10 ₈	DDDDEEDNNUUSUUWWWSSWWNNEDDEEESSDDNNUEEUUNWWSSSWWNNNWWSSEUUEE
109	DDDDEEUSUWWDWWUUEEEESSWWSSEENDNWWWNNNDNEESSSUUUSSDDWDNNUUUNN
10_{10}	DDDDEEUEUSSDDNNENNWWSUUUWSSSDDNNNNEESDDESSUUWWUWWWNNEESEUUWW
1011	DDDDEEDNNUUSSUSUWWWNNEEENNWDWSSEEEDDWWDSSUUNNNUUUSSDDSSUUWNN
10_{12}	DDDDEEEDDWWSUUEEUUWWWWDNNEESSSUUNNNEDDDDSSSUUNNENNWUWSSEUUWW
1013	DDDDDEEUUESSWWNNNWWSSSWUUNEEESSDWWNNWDDEEUUEEDDENNWWSSSWUUUUNN
10_{14}	DDDDDEEDNNUUSSSUUWWWNNEENDDSSSDDNNUEEUUWWWNUUESSSSDDNNEUUUWW
10_{15}	DDDDDEEUUESSWWNNNWWSSSDEENNNEESSWUUUWWWSSEEDNNWWWDDEEUSUUUNN
10_{16}	DDDDDEEEUUWWNWWSSEEESUUNWNNEDDDSSDDWNNUUSSSUUNEENNNWWSSEUUWW
10_{17}	DDDDEEDNNUUSSSUUNNUWUSSDDNNNDDSSSDDNNUEEUUWWWSSEENEEUUWWW
10_{18}	DDDDEEDNNUUSSSUUNNNNWWSSEUSEEDDWWSWWNNEEEEDDWWDSSUUNNNUUUWSS
10_{19}	DDDDEEEUUWWSWWNNEEEEUUWWDWWUNNEESDDDSSSDDNNEUUSSUUNNNNWWSUSS
10_{20}	DDDDEESUUWWDDWWDNNUUSSUUEEESSWWNDNNWWDDEEDSSUUNNNEESSSUWUUNN
10_{21}	DDDDEEEDDNWWWUUEEEUUWWWWSSEUENNNDDSSSDDNNNDDSESUUNNUUSSUUUWW
10 ₂₂	DDDDEEEUUWWUUEEDSDWWWWNNEEENNWWSUSEESSSDDNNNDDSSUWUNNNUUUSWS
10_{23}	DDDDDEEUUENEDDWWUUUUWSSSDDNNNWDWSSEENNNEESSSUUWWWWNNEESEUUWW
10 ₂₄	DDDDEEEUUUNNDWDSSSDWDNNUUSSSEUUNWWWNNEEEDEESSWWWSUUNNDDNNUUSWS
10 ₂₅	DDDDDDEEUUWSSEENNNWWWNNEEUSSWSSSUUNNNNDDDDSSSEUUUWWWNNEEEUUWSW
10 ₂₆	DDDDEEUUUEEDDDWSWUUUWWDWNNEEEDESSEENNUWWSSSWDWNNNUUSSDSSUUNNW
10 ₂₇	
10 ₂₈	DDDDDEEUUWSSUUUUNNDDSWSSEENNNNDDWWWSUSEEEDDWNNNUUSSEEUUSWWWN
10_{29}	DDDDDLDNUUSSSWWNNEUESEEUNNWWSSSWWNDNNUUSEEEDDDDWWWWUUUEENUUSS

K	NEWSUD Form
1030	DDDDDEEUUESEDDWWUUUWWWNNEEENDDWSSSSSEENNNWUWNUUSSSSDDNNUEUUWW
10 ₃₁	DDDDDEEUUUUNWWWNDDSSSEEESUSWWNNEEENNWWSUSSDDDNNNWWWUUEENUUSS
1032	DDDDDEEUNNUUUWSSDSSDDNNNDEEUUWWWWSSEEEUENNNNWWSSEUEESDDWWUUUWW
1033	DDDDDEEUNUUSSSSWWNNENNUWWSSEEEEDDWWWWNNEESEEDNDWWUSSSUUUUNNW
1034	DDDDEEUUWSWWNNEEEDDWWUNNUUSSEESESSWWNNUNNDDWWDDEEUSSSEUUUWWN
1035	DDDDEEDNNUUSSSUUENNDDDWWDSSUUNNNNUEUSSDWWUWSSEENNNDEEESSWWUUWW
10 ₃₆	DDDDEENEDDWWUUUSSSUUNNNEDDSSSDDNNNNWWSSSUEEEUUWWWWNNEESEUUWW
1037	DDDDEEUNNNWWSSUEEEDDWWUSSWWNNNNWWSUSEENNEUESSWWWNDDDEEEUUWUUSS
10 ₃₈	DDDDDEEUNNWUUSSDEENDDWWUSSSUUUNNNEEDSSWWWSSDEENNWWWNNEEEUSUUWW
1039	DDDDDEESUUWWWNNEEENNWUWSSEEEUSSSWDDWDNNNUUUSSSEDESSWWNNNEUUWW
1040	DDDDDEEUUSSUUENNDDSDWWNNENUUSWWWSSEEEEEDNNWWWNUUSSSSDDNNUEUUWW
1041	DDDDDEEUUUUWNWWNDDDDDESEUSSWWNNENNUWWSSEEESSEENUNWWSSWWNNENUUSS
1042	DDDDDEESUUWWWNWWSSEEEEUUNWWWDDDDEEEUNNWWSSSSUUNNNNEESSWSUUNN
1043	DDDDDDEEUUUNUUWSSSDDDDNNNEEUSSWWWWNUNEESSWSSEEUNNWWWNNEESEUUWW
1044	DDDDDEEEUUWWSWWNNEEEEUUWWWWSSEENUNNDDSSSSEENNWNNDDSSSUUUUWWN
1045	DDDDDEEEEUUWWNDDDSSUUUUWWWNNEEEEDDSSSWWNNNUNUUSSSSDDNNUEUUWW
1046	DDDEEEDSSUUUNNNWDDDSSUEESSWUWNNEEUUWWDWNNWDWSSEENNNEESSWUUWW
1047	DDDDEEESUUWWWWNNEEEDSSSUUNNNEESSWUUWWDDNNNDDSSUEEUUESSWWNNWW
1048	DDDDEEEUUWWUSSDDNNNDDESSUUNNNUUNWWSSEESSDWWWNNEEEENNWWSUUWSS
1049	DDDDEEEUUWWSWWNNEEEUUWWDNDDESSSDEDNNUUSSUUUENNDNWWSSSSEENNWUWW
1050	DDDDEEEUUUSSDDWWNNNDDSSUEUNNNUUSWWWSSEEEDEENNWWWNUUSSDDSSUUNWN
1051	DDDDEEUUSUWWWSWDDWWUUNEEDDDEEUUESSWWNNNWWSSSEDENNNNEESSSWUUUNN
1052	DDDDDEEESUUUSWWNNNDDSSUEEESSWWNUUWWWSDDNNNEEEDSSWWWWUUEESUUNN
1053	DDDDDEEUUNUUWSSSDDSEENNNNDWWSSSEUUSWWNNEEEEDDWWUWWWNNEESUEUUWW
1054	DDDEEEDDWSWUUEEEUUUWWDDSDDNNNUUUESSSWWNNNWWSSDEENNNEESSWUUWW
1055	DDDDDEEUUUWNNNDDDSSUSSEENNNWWWNNEUESSWWWUUSEEEDDWSSWWNNUENUUSS
1056	DDDDDEEEUUWWUSSDDNNNDDSSEUUNNNUUSSESSWUWNNNEEDDWWWWSSEEEUUUWWN
1057	DDDDDEESUUWWWNNNDEESSSSUUUUNNNDWWSSEEESSWWNDNENNWWWDDEEUNUUUSS
1058	DDDEENNWWWUSSSEUENNWWWDDEEUNNNEESSWUUUESSDDNNNWDDDSSUUEEUUWWSW
1059	DDDDEEUEEEUUWWDNDDSSUUUUWWDNNEEEDSSSWWWDNNNUWWSSEEEDSSUUNNNUWW
1060	DDDDDEEUUWUUSSDDNDNNUUSWWSSEEENNNUNUWWSDDDSEEEUUWWWWNNEESUSSW
1061	DDDEEDDSWWUUEEEUUWWNNWWSSESDDSESUUNNDDDNNNUUSSWWSSEEENNNUUWW
10 ₆₂	DDDDEEEUUWWUUSSDDDNNNDEDSSUUNNNUUSSSWWSDSEENNWWWNNEEEEUUWWWS
10 ₆₃	DDDDDEEUSUWWWNUNNUEESSSEENNWDDWWWWUUEEDNDDESSSSUUNNNNEESSWUUWW
10 ₆₄	DDDDEEUNNEESSSDWWUUUWWWNNEEDESEEEDDWWUSSWWNNNDEEUUUWSWDSWSUUNN
1065	DDDDDEEUUUUNWWWSWWNNDEESSSEEEENNWWSUSSDDDNNNEEUSSWWNNWWWUUUESE
10 ₆₆	DDDDDEEUUENNWWSWWSWSUUENNNEDDDESSSEENNWUUUWWDWNNEESSSSWWNWUUEE
1067	DDDDEEUENNWWSSSUSEEENNWWWNNUUSSDSWWNNEEEDDDESSUUUSSDDNWNUUUWWN
1068	DDDDDEEUUNWWWSSSWUWNNEESSSEENDDNNNNUUUSSSWWWDDDEEUEESSWWNUUUNN
1069	DDDDDEEUUUUNWWWNDDDSSSEENNDWWWUUEEESSSUUNNDNEESSWWWWNNENUUSS
1070	DDDDDEEEUNNWWSSSSUUNNENDDDEEUSUWWWNWWSSSUUNEEEDDWWDWWUUEESUUNN
1071	DDDDEEUEENUUWWSSEDDDDEEUUWUSSDDNNNUUSESSDWWWNNNWUWSSEENEUUWW
1072	DDDDDEEUNNNWWSSWSSEENNDEEUUWWWWWUUEEENDDDDWWUUUSSSEENNWNUUSS
1073	DDDDDEENUUWWWSSSEEEENNWWSDSSUUNNNNDDSSESUUUWWWWDDDEEUUSUUNN
1074	DDDDDEEUUWUNNDDSSSSUUUWNWNWWSDSEENNDNEEEUSSWWSSDEENNWWWUUUEEN
1075	DDDDEEENUUUNWWSWWWDDEEESSSEENNWNDDSSUUUUNNDNEESSWWWSWWNNNUUESS

K	NEWSUD Form
1076	DDDDEEUUUNWWWSSEEEESSWWWDNNEEENNDWWSSSEUUUSSDWDNNUUNNDDNNUUSWS
1077	DDDDENNUUSSSWWNWWDDEEUNNWUUSSSDDNNDEEUEEUUWWWSUUNNDDDSWWUUEEES
1078	DDDDDEEUNUUUWSSSDDNNEEEDDWNWWUSSSEENNNEDDSWSWUUUUWWWNNEESEUUWW
1079	DDDDEEUUWNNWUWSSSEEESDSWWNNEEEUNNNWWSSUSSDDDNNNEUUUWWDDWSWUUEE
10_{80}	DDDDDEEUUWNWWWUUEEEEDDDWSSSUUUNNDNNEEDSSSWWWSSEENUNWWWNNENUUSS
10_{81}	DDDDDDDENEEUUWWWWSSEDENNNUUSSSSUUNNDEDDDNNUUUUSSSDWWWNNEEEEUUWWSW
10_{82}	DDDDEEDNNUUSSSSUUWNNNDDSSSDDNNUEEUUUSSDWWWWNNEEENEESSWWUUWW
10 ₈₃	DDDDDEEEUUWWDSSUUNNNNWWSSSWDDENEEUEUUWWWWDDESSEEEDNNNWUWUUUSS
10_{84}	DDDDDEEUUUSSUUNWNDNWWSSEEEEDDWWWWNNNDEESSSSUUNNNWWWDDEEUNUUUSS
10_{85}	DDDDEESSEUENNWWSSWUUNNNNDDSSSDDEEUUUUNNDWWWWSSEEESEENNWWUUWW
10_{86}	DDDDDDEEUUUUWNNDDDSSSSUUNNNEUUWWWNDDSSDSEEEENNWWWWUUEENUUSS
10_{87}	DDDDDEEUUEENNWWSWWWSSEEEEDNNUUNUWWDDDSSSSUUUNNNEDNNWWSSESEUUWW
10_{88}	DDDDDEEUNUUUWWWDDEEENEESSWWDNNNNUUSSSSSWWNNNNDEEEDSDWWUUUUUSS
10_{89}	DDDDDEENUUWWWWUUEEEEDNDWNNUUSSDSSSWWNNNNEEEDDWSSSSSWWNNNEUUUUSS
10_{90}	DDDDDEEEUUUSSDWWNWWNNEEEEESSWWUUWWDSDDEENNNDDSSWUUNNNUUSSSSUUNWN
10_{91}	DDDDDEEUUUEEDDNWWUUUWWWSSDEDEEENNNWWSWWNNEUESSSSSDDNNNNWUUUUSS
10_{92}	DDDDDEEUUWNNNWWSSSSEEEUUWNNNWDDSDWWUUEEENEESSWWSSDDNNNEUUUUWSW
10_{93}	DDDDEEEUUNWUUUWWDDESSEDDNNDWDSSUUNNWNUUEEESSWDWSWWNNEENNUUSSSW
10 ₉₄	DDDDDEEUNNUUESSSWWWSSEDENNWWWNNEEEEEUUWWWSSSDDDNNNDEEUSUWUUUWW
1095	DDDDEEUUUESSWDWWSWWNNEEENNEESSWUUWWDWNNEESSSSDDNNNNWWSSSUUUNNE
1096	DDDDDEEUUUNUWWWNNDEESSSUSSDDNEENNWWWWWDDEEESSESUUNWWWNDNNEUUUSS
1097	DDDDEEEUUWWNWWSSESUSEENNNNDDSSSWWWUUNEENUUSSDDDSDDNNUUEEUUWWWN
10_{98}	DDDDEEESUUWWWWNNEENNDDSSUSSDDNENUUUUSSSDDNNENNWWWUUESSDEEUUWWW
1099	DDDDDEEUUWNWNUUEEEDSSWWSSDDNNNEUUUUUWWDDESESDDWWWUNNEENNUUSSSW
10_{100}	DDDDEEENUUUNWWWDDSESSDEDNNUUSSUUWNNUNNDDSSWWSSEENEEENNWWSUUSWW
10 ₁₀₁	DDDDDEESUUENNWWWSSEESSDDNNUNNNUUSSSSSWUWNNEENEDDDESSWWWUUUUNN
10 ₁₀₂	DDDDEDNNUUNWWSSSSEENNEEUUWWWWNNEDESSWWWDDEEEESUUNNNDDWWSUUUUSS
10 ₁₀₃	DDDDDEESUUWWWWUUEEENNEDDWWWSUSSSEEENNNWNNDDSSSSUUUSWSDDNNUUUNN
10 ₁₀₄	
10 ₁₀₅	
10 ₁₀₆	
10 ₁₀₇	DDDDEEFOOM & A MARCAGA AND A MARCAGA AND A MARCAGA AND A COMMUNICATION AND A MARCAGA AND A COMMUNICATION AND A
10 ₁₀₈	DDDEEONOWWDDDWWOOESSSOONNNNWDDEESEENNNUUURDDSSCOOOCE
10 ₁₀₉	
10 ₁₁₀	
10,	
10112	
10113	DDDDEFIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
10114	
10115	
10116	DDDDDEEUUUSSSSWWNNENNWWDDEEUUUUSSSSEEEEDDWWWWNNDEESSSSUUUUUNW
10110	DDDDDEEUUWNNUUUSSSEESDDWWWWNNUEEEESSWSUWWDWNNEESSSDDOOONWN
10110	
10120	DDDDEEDSSUUNUWWWNNEESEEEDDWSWWDNNUEUUUWSSUEEDDDNNNWWSSSSUEUNNUWW
10 ₁₂₁	DDDDEDNNUUUUSSSSDDNNNENNWSSWWUUEEDEEESSWWWWNNNDDESEESUUUUWW

Table A4. (Continued.)

K	NEWSUD Form
10122	DDDDDEEUUSUUWWWWDDEEESSDDNNUNNNUUSSSSSWWNNNNDEEEDESSWSWWUUUUNN
10123	DDDDEEEENNWWWUUUSSSSDDNNNDDDEEUUUUWWWWSSEEEDDDNNNNUUSSSUUUWW
10124	DDDDEDSSUUUNNNNWWSSDDSEEEUUUWNNWDDWWSSEEENEUUUWW
10125	DDDEEEUNNWWSSSUEEDDWWDDNNUUWUUESEDSSDDNNWWNNUEESUUUSWW
10126	DDDEEEUUSWWNNWDDWNNEESSDDEEUUUWWSSWWNNNEDDEESSSUUNUUWW
10127	DDDDEEEUUNWWSSWUWNUNNDDSSSSEUENNNWWWDDEEESSEEENNWWSUUUWW
10128	DDDDEEEUUWWUNUEEDDWWWDDDSSSUUENNNNWDWSSSEEEUNNNUUSSUWW
10129	DDDDDEESUUUUNWNWWSSDEDENEESSWWDNNNNUUSSSSWDWNNNEEEUUUWSW
10130	DDDDEEEUUWWDNNUUSSSSWWNNNEDEEDSSSUUNNUUWWSDDDEEEUUWWNW
10131	DDDDDEEUUWNNEESSSWWWWNUNEUEEDDDWSSSUUUNWWNNNEDESSSWSUUNN
10132	DDDDEEESUUUWWWWNNEEESDSDDDNNUUUWSSSEEENNDWWWSWUSUUNN
10133	DDDDEEEUUUUSSDDNWWWNNEDESSSUEUNEENNWWWSSSSEDDNNNUUUWW
10134	DDDDENEUUUWWWSSSEENNDNWDWWSSUUUEEDDSWWWNNEEDSEENNNUUUSSW
10135	DDDDEEUUUSWWWNNEENNEESSSDDNNWUUUWWDDESSSEEENNWWDWSSWSUUUNN
10136	DDDDEDSESUUUWNNNWWWDDEEEUSSSWWNNNNUUSSSEEEDDDWWUUSUUNN
10137	DDDDDEENEUUWWWWWUSSEEENNENDDSSSUWWWNUNEUESSSDDDNNUEUUUWW
10138	DDDDEEUUNUWWWSSEEEUNNNDDSSUEUUWWWDDDSEEEEDNNWWSSSUWUUNN
10139	DDDDEENUUUWWDDWWWUUEESSEDENNNWWSSSDEENNNWWWUSSUUEE
10140	DDDDEEUNUUNNNDWWDSSESSSWWNNUUEENNDDDSSWUUESEENNWWWUUSS
10141	DDDDDEEUUNNWUUSSSWWWDDEEDENNEEUUWWWSSSSDDNNNEUESUEUUWW
10142	DDDDEEEUUWWNWWNDDSSSEEEUNNUUWWWSSEDEDNNDDWWWUUEENUUUSS
10143	DDDDEEEEUUNWWWSSWWDNNEESSSEENNNNUUSWSSDDDDNNUUSUEUUWWW
10_{144}	DDDDEEENNWUWSSEEUSUWWWWNNEEESDSDWDSSUUNNNNEDDDSSSUUWWUUUNN
10145	DDDDEEEUUNWWWDDWWUUUEEENEDDSSSWWWNNNEESSUSWWNNNUEUSS
10146	DDDDEDNNUUSSSSUUNNNEDDDWWWWSSUEEDEEUUWWWSDDNNUUNEESEUUWW
10147	DDDDEEEUUNWWWWSSEEEEDDWWUSUUNNNENDDSSSSDDWNNNUUSUEUUWW
10148	DDDDEENUUUNNWWDWSSWDDEEUUESEENNWWUSWWWNDDESSSEENNNWUUUSS
10149	DDDDDEEEUUNUWWSDSSUUNNNNDDDSSSDEDNNUUSSUUWWWNNDEEESUUUWW
10_{150}	DDDDEEUUUWNWWSDSSDDNNUNNDEESUSSWWWUUEEEDNNWWWDDEEUNUUUSS
10151	DDDDDEEUESSWWNNNNUUUSSSSDDNNUNEEDDDSSWUUUWWWDNNEEESUUUWW
10152	DDDEEENUUWWSSSWWDDNEEEUUUWWDDSDDNNENUUSSSEDDNNNUUSUUWW
10153	DDDDESEUUUWWDDDWWUNNEEESSSWWNNDNNUUUSSDSSEENNNWWWUUEES
10154	DDDDEEEUNNWUUUSSDDDNDEEUUUWWWWNNEEESDSWWWWSSEENDNNUUUWSS
10155	DDDDEEUUSSSWWNNENUNNDDSSSEEUUWWWWDNNEEEDEDSSSUWWUUUNWN
10156	DDDDDEENUUUWWWWSDDENEESSSUUUNNNNDDSSSWWWWNNEESUSEEEUUNWW
10157	DDDDDEEUUUSWWWDDEEENNNUUUSWWSSSDDNNNEEEESSWWNUNWNUUSS
10158	DDDDEEUUUNWWWDDEEESSSWWUNNNNUUSSDSEENDNEESSWWWDWUUUEEN
10159	DDDDDEEUUUNWWWDDEEUESUSSDDNNNNUUUSSSWWNNNDDSSSEEEUUUWWN
10160	DDDDEEEUUUSWSUUNNNDDWSSSDDNNNUEEESSWWWWUUEEESDDDWNNUUUWW
10161	DDDEEEDDWWWUSUEEEUNNUWWSSSDDDNNNUUSSESDDNNNUUSUUWW
10162	DDDDEEEENUUUWWWSSEDDDDNNUUUWSSSEENNNNEEDSSWWNNWWSSEUUUWW
10163	DDDDDEEUUUUWNWDWSSDEEEENNWWWWSWUUESEESDDDNNNNUUSSSWSUUNN
10164	DDDDDEESUUUWWWNNEEEESDDWWSSWUUEUNNNNDDSSSSEENENNWWSUUUWW
10165	DDDDDEEEUUUNWWWWSSEESDDNNNUEEESSWWWWSUUNENNNDDDESSUUUUWW
Granny	DDDDEEUESSWWNNNDEDSSUUUUWNNWWSSDEENEUUWW
Square	DDDDEDNNUUSSSWWDNNEEEUUUWWDWSSEENNNWUUSS

References

- [1] Arãgao de Carvalho C and Caracciolo S 1983 J. Phys. (Paris) 44 323-31
- [2] Arãgao de Carvalho C, Caracciolo S and Frölich J 1983 Nucl. Phys. B 215 209-48
- [3] Arsuaga J et al 2002 Proc. Natl Acad. Sci. USA 99 5373-7
- [4] Buck D and Flapan E 2007 J. Mol. Biol. 374 1186–99
- [5] Buck G R and Zechiedrich E L 2004 J. Mol. Biol. 340 933-9
- [6] Calvo J A and Millett K C 1998 Ideal Knots: Series on Knots and Everything vol 19 ed A Stasiak, V Katrich and L H Kauffman (Singapore: World Scientific) pp 107–28
- [7] Darcy I K et al 2006 BMC Bioinform. 7 435
- [8] Dean F B et al 1985 J. Biol. Chem. 260 4975-83
- [9] Diao Y 1993 J. Knot Theory Ramifications 2 413-25
- [10] Diao Y 1994 J. Stat. Phys. 74 1247–54
- [11] Diao Y 1995 J. Knot Theory Ramifications 4 189–96
- [12] Diao Y, Nardo J and Sun Y 2001 J. Knot Theory Ramifications 10 597-607
- [13] Hsieh T 1983 J. Biol. Chem. 258 8413–20
- [14] Huh Y and Oh S 2005 J. Knot Theory Ramifications 14 859-67
- [15] Hua X et al 2007 Topol. Appl. 154 1381–97
- [16] Ishihara K 2009 preprint
- [17] Ishihara K, Shimokawa K and Yamaguchi Y 2009 preprint
- [18] Janse van Rensburg E J 1998 Ideal Knots: Series on Knots and Everything vol 19 ed A Stasiak, V Katrich and L H Kauffman (Singapore: World Scientific) pp 88–106
- [19] Janse van Rensburg E J, Sumners D W and Whittington S G 1998 Ideal Knots: Series on Knots and Everything vol 19 ed A Stasiak, V Katrich and L H Kauffman (Singapore: World Scientific) pp 70–87
- [20] Janse van Rensburg E J and Whittington S G 1991 J. Phys. A Math. Gen. 24 5553-67
- [21] Klenin K V et al 1988 J. Biomol. Struct. Dyn. 5 1173-85
- [22] King N P, Yeates E O and Yeates T O 2007 J. Mol. Biol. 373 153-66
- [23] Madras N and Slade G 1996 The self-avoiding walk Probability and Its Applications (Boston, MA: Birkhauser)
- [24] Mallam A L et al 2008 Mol. Cell **30** 642–8
- [25] Mueller J E, Du S M and Seeman N C 1991 J. Am Chem. Soc. 113 6306-8
- [26] Nureki O et al 2002 Acta Crystallogr. D: Biol. Crystallogr. 58 1129-37
- [27] Petrushenko Z M et al 2006 J. Biol. Chem. 281 4606–15
- [28] Rybenkov V V, Cozzarelli N R and Vologodskii A V 1993 Proc. Natl Acad. Sci. USA 90 5307-11
- [29] Scharein Robert G 1998 Interactive topological drawing PhD Thesis Department of Computer Science, The University of British Columbia
- [30] Seeman N C 2003 Biochemistry 42 7259-69
- [31] Shaw S Y and Wang J C 1993 Science 260 533-6
- [32] Stray J E et al 2005 J. Biol. Chem. 280 34723-34
- [33] Taylor W R 2000 Nature 406 916-9
- [34] Vazquez M, Colloms S and Sumners D W J. Mol. Biol. 346 493-504
- [35] Virnau P, Mirny L A and Kardar M 2006 PLoS Comput. Biol. 2 e122
- [36] Yeates T O, Norcross T S and King N P 2007 Curr. Opin. Chem. Biol. 11 595-603